Maternal-zygotic gene conflict over sex determination: effects of inbreeding.
نویسندگان
چکیده
There is growing evidence that sex determination in a wide range of organisms is determined by interactions between maternal-effect genes and zygotically expressing genes. Maternal-effect genes typically produce products (e.g., mRNA or proteins) that are placed into the egg during oogenesis and therefore depend upon maternal genotype. Here it is shown that maternal-effect and zygotic genes are subject to conflicting selective pressures over sex determination in species with partial inbreeding or subdivided populations. The optimal sex ratios for maternal-effect genes and zygotically expressing genes are derived for two models: partial inbreeding (sibmating) and subdivided populations with local mating in temporary demes (local mate competition). In both cases, maternal-effect genes are selected to bias sex determination more toward females than are zygotically expressed genes. By investigating the invasion criteria for zygotic genes in a population producing the maternal optimum (and vice versa), it is shown that genetic conflict occurs between these genes. Even relatively low levels of inbreeding or subdivision can result in maternal-zygotic gene conflict over sex determination. The generality of maternal-zygotic gene conflict to sex determination evolution is discussed; such conflict should be considered in genetic studies of sex-determining mechanisms.
منابع مشابه
A genetic analysis of hermaphrodite, a pleiotropic sex determination gene in Drosophila melanogaster.
Sex determination in Drosophila is controlled by a cascade of regulatory genes. Here we describe hermaphrodite (her), a new component of this regulatory cascade with pleiotropic zygotic and maternal functions. Zygotically, her+ function is required for female sexual differentiation: when zygotic her+ function is lacking, females are transformed to intersexes. Zygotic her+ function may also play...
متن کاملMaternal and zygotic sex-specific gene interactions in Drosophila melanogaster.
Sex-lethal (Sxl) is a vital, X-chromosome gene involved in Drosophila sex determination. The most striking aspect of the phenotype of daughterless (da), an autosomal maternal-effect mutation, may be explained by effects on the functioning of the Sxl gene in the zygote. In this paper, new aspects of interactions between various combinations of Sxl and da alleles are explored in order to understa...
متن کاملMaternal control of haplodiploid sex determination in the wasp Nasonia.
All insects in the order Hymenoptera have haplodiploid sex determination, in which males emerge from haploid unfertilized eggs and females are diploid. Sex determination in the honeybee Apis mellifera is controlled by the complementary sex determination (csd) locus, but the mechanisms controlling sex determination in other Hymenoptera without csd are unknown. We identified the sex-determination...
متن کاملPrimary Sex Determination in Drosophila melanogaster Does Not Rely on the Male-Specific Lethal Complex.
It has been proposed that the Male Specific Lethal (MSL) complex is active in Drosophila melanogaster embryos of both sexes prior to the maternal-to-zygotic transition. Elevated gene expression from the two X chromosomes of female embryos is proposed to facilitate the stable establishment of Sex-lethal (Sxl) expression, which determines sex and represses further activity of the MSL complex, lea...
متن کاملSex determination in Drosophila: the X-chromosomal gene liz is required for Sxl activity.
In Drosophila, females require products of the gene Sxl for sex determination, dosage compensation and fertility. I show here that the X-chromosomal gene liz, located in 4F1 to 4F11 and previously called fs(1)1621, provides maternal and zygotic functions necessary for Sxl activity in germ line and soma. In XX animals, the mutation SxlM1 which was reported to express the female-specific function...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics
دوره 155 3 شماره
صفحات -
تاریخ انتشار 2000